
A New Era of Integrated Design Optimization

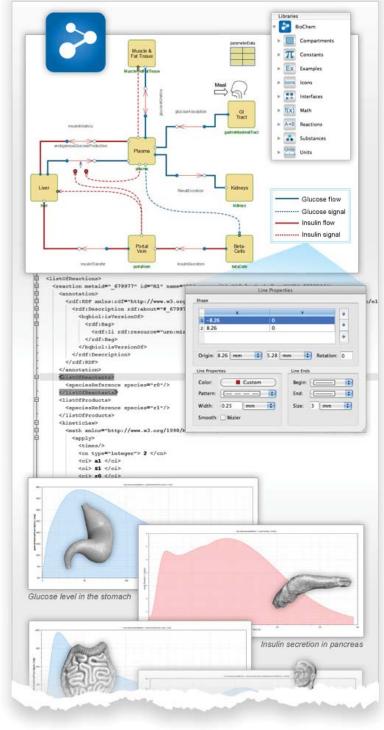
SystemModeler is the most complete physical modeling and simulation tool.

Model with Real-World Topology

Connections between model components, such as the carrier, catapult, and control logic, mirror the real-world interactions between the corresponding objects and subsystems.

Built-in Model Libraries

Combine components from built-in logical and state graph libraries to control the launch sequence of the catapult. Unlike other systems, *SystemModeler* requires no add-ons and fully supports the standard Modelica model language.

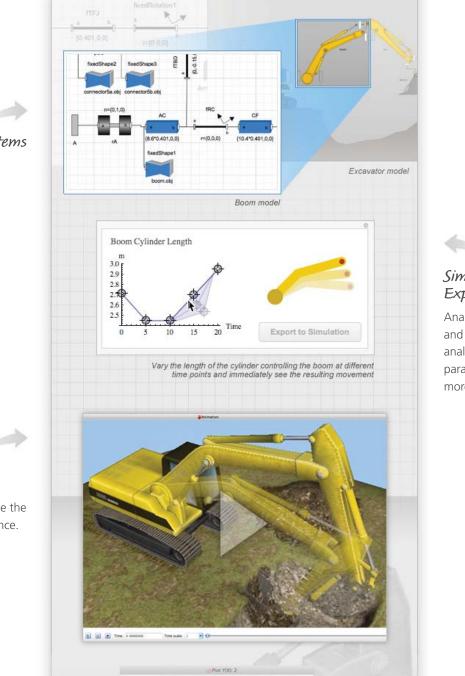


Use the built-in **BioChem** library to model the glucose-insulin system in a human body.

Use SBML Models

Import and export Systems Biology Markup Language (SBML) models.

Annotate the Model


Add text and graphical content to make the model easy to understand.

Plot the response to glucose intake in different organs.

And *SystemModeler* is designed to connect perfectly with *Mathematica*[®] for the ultimate integrated modeling, simulation, and analysis workflow.

- bucket.bucket.frame_b.r_0[3] vs bucket.bucket.frame_b.r_0[1]

Model 3D Mechanical Systems

Use the built-in multibody library to model an excavator.

CAD Animation

Attach textures to a model and clearly see the real-world resemblance.

Analyze simulation results and perform sensitivity analysis, model calibration, parameter sweeps, and more in *Mathematica*.

MODELING AND SIMULATION

Build high-fidelity models using predefined components in an easy drag-and-drop environment. Perform numerical experiments on your models to explore and tune system behavior. Key features include:

Built-in Model Libraries

Model mechanical systems, biochemical pathways,

electronics, and more with

Hybrid Systems Modeling

discontinuities in hybrid systems

so models with sudden events

built-in libraries.

Detect and handle

Drag-and-Drop Modeling

Simply pick up components like transistors or springs and drop them onto the canvas to create models.

Hierarchical Modeling

Create hierarchical, component-based models with individually testable and reusable subcomponents.

Multi-domain Modeling Correctly model and simulate real-world systems that

include parts from multiple

physical domains.

	11
2	444

Simulation & Experimentation

are correctly simulated.

Perform numerical experiments with simulation executables automatically compiled from your model.

		•	

Instant Visualization

Plot any system variable with a single click, and automatically animate 3D mechanical systems.

ANALYSIS AND DESIGN WITH MATHEMATICA

Get a deeper understanding of model behavior using *Mathematica*. Analyze model equations and simulation results using all of *Mathematica*'s features, including visualization, control systems design, and more. Highlights include:

Programmatic Simulation Control

Drive SystemModeler simulations from Mathematica for parameter sweeps, optimization, and more.

Sensitivity Analysis

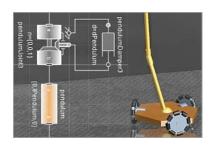
Predict the effect of uncertainty in parameter values and discover parameters that have the largest effect on system behavior.

Model Calibration

Use *Mathematica* to calibrate and optimally fit model parameters to real-world data.

Notebook Environment

Combine code, data, explanatory text, plots and graphics, and interactive elements in a single document.


Plotting & Custom Visualization

Plot variables and sensitivity bands directly from simulation results, and create custom graphics and user interfaces.

Model & Equation Analysis

Analyze system equations and other model properties using *Mathematica*.

SystemModeler model equations and simulation results are accessible in Mathematica in a completely native form, immediately suitable for use with Mathematica's large collections of algorithms for symbolic and numerical mathematics.

Control System Design

Automatically linearize models into state-space form to analyze stability, design controllers, and more.

WHO USES WOLFRAM TECHNOLOGY?

Millions of users from Fortune 500 companies to government departments to thousands of universities worldwide, including:

- Bosch Rexroth
- EADS
- NASA
- Saab
- Scania
- Siemens
- Rolls-Royce
- Tetra Pak

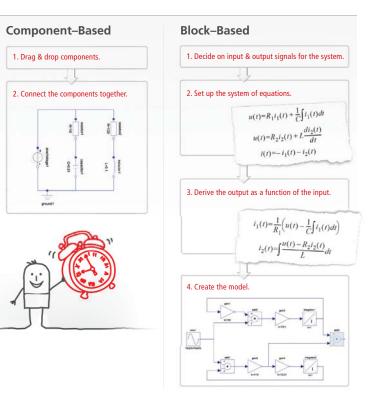
WHAT EXPERTS ARE SAYING

"By using [Wolfram] MathCore as an external partner, we can be sure that we really obtain a finished model with correct results, within the given constraints. We can therefore give MathCore our best recommendations."

> -Lennart Näs Manager, Gas Turbine Performance and Thermal Processes, Siemens Industrial Turbomachinery AB

" As a world leader in ship propulsion development, it is crucial to have an indepth understanding of system dynamics. Therefore, we collaborate with [Wolfram] MathCore whenever we need to develop and analyze dynamic models of our systems."

> -Stig Lönngren Responsible for Development of Pod Propulsion Mermaid™, Rolls-Royce AB


"[SystemModeler] MathModelica provides state-of-the-art tools for kinetic analysis, which accelerates progress in the experimental area of systems biology."

> –Dr. Vitaly Selivanov Universitat de Barcelona

© 2012 Wolfram Research, Inc. *Mathematica* is a registered trademark and Wolfram *SystemModeler* is a trademark of Wolfram Research, Inc. All other trademarks are the property of their respective owners. *Mathematica* is not associated with Mathematica Policy Research, Inc. MKT1171 MAMO-494 06.12nh

WHY SYSTEMMODELER

SystemModeler is the most complete physical modeling and simulation tool. Unlike other systems, *SystemModeler* requires no add-ons and fully supports the standard Modelica model language.

NEXT STEPS

Take a Free On-Demand Course

Get a quick introduction to *SystemModeler* capabilities, learn how to extend your model analysis and design with *Mathematica*, get an in-depth tour of the Modelica language, and much more.

View Online Documentation

Find the complete up-to-date documentation of *SystemModeler*'s functions and capabilities.

Get Help with Your Projects

Wolfram MathCore consultants and support staff bring technical skills, vertical industry prowess, and unmatched expertise to meet customer goals.

To request a free trial and learn more, visit: • www.wolfram.com/system-modeler

WOLFRAM RESEARCH, INC.

www.wolfram.com/contact-us 1-800-WOLFRAM (965-3726) +1-217-398-0700 (outside US & Canada)

WOLFRAM RESEARCH EUROPE LTD.

www.wolfram.co.uk/contact-us +44-(0)1993-883400